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1. Introduction 

The purpose of  this paper is to review the impact and use of the FPS-X64 scientific 
computers in computational chemistry, focusing attention on experience gained 
on both an FPS-164/MAX, installed at the Science and Engineering Research 
Council 's Daresbury Laboratory, UK, and on the distributed system, composed 
of an IBM 4381-3 front end processor and 10 FPS-164 attached array processors, 
at the ECSEC facility in Rome, Italy. 

The review is necessarily selective, and is divided into several sections. In Sect. 
2 we outline some general characteristics of the FPS-X64 machines. We consider 
their performance in various computational chemistry kernels in Sect. 3, where 
the general strategy adopted in code implementation is outlined. In Sect. 4 we 
consider the implementation and performance on FPS X64 scientific computers 
of a typical ab initio program, GAMESS, and provide in Sect. 5 estimates of the 
cost-effectiveness of these machines in the context of supercomputers exemplified 
by the Cray-lS and CDC Cyber-205. 

In Sect. 6 we consider the feasibility of migrating computational chemistry codes 
to the different architectures characteristic of the next generation of multipro- 
cessors. Finally, in Sect. 7 we describe our initial attempts at adapting codes to 
run on the distributed system of multiple FPS processors at the ECSEC facility 
in Rome. 

1.1. Cost-effective computing in chemistry 

The introduction in 1976 of the VAX 11/780 by Digital provided arguably the 
greatest impetus to the use of minicomputers in large scale chemical computations, 
and led to the migration of many theoretical chemists from the less cost-effective 
alternative offered by the large scalar mainframes that typified the central comput- 
ing facility of the 1960s and 1970s. Since 1976 use of the VAX-11/780 "super- 
minicomputer" or its equivalents in chemical computations has proliferated to 
the extent of becoming a de facto standard. Yet even the new generation of 
superminis, from Data General, Digital, Gould/SEL,  Prime, Harris, IBM and 
Perkin-Elmer [1], that provide speeds several times that of the VAX-11/780, 
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cannot disguise the fact that such machines are often inadequate for more than 
routine applications. Indeed the superminis perform as much as two orders of 
magnitude slower than the supercomputers in widespread use, the Cray-lS and 
CDC Cyber-205. 

The search for increased cost-effective performance is evident in the emergence 
of two classes of computer systems during the last decade, the supercomputer 
itself and superminis with attached processors (hereafter referred to as mini + AP). 
We consider in the sections below the relative merits of these two approaches 
and, by comparing the performance of chemical software on both Cray-lS and 
FPS-164/MAX, consider whether mini § AP configurations represent genuine 
alternatives to time-shared supercomputer access. 

The pioneering work on the FPS-164 attached scientific computer was conducted 
by workers in the theoretical chemistry group at Argonne National Laboratory 
[2]. This work demonstrated that the FPS-164 provides performance comparable 
to that of modern mainframe computers at a cost comparable to that of a 
supermini. A feature of the Argonne work, however, and one that will continually 
be reflected in the following sections, is that achieving such performance requires 
considerable care in developing and implementing codes. Such an effect is, of 
course, well established in the regime of supercomputers typified by the Cray-lS 
[3-5]. 

Finally, mention should be made of the inevitable path that lies ahead in the 
search for improved performance, namely the exploitation of the parallelism 
inherent in scientific computation. Perhaps the most impressive demonstration 
in a chemical framework of migrating code from sequential to parallel is seen in 
the LCAP parallel system due to Clementi and co-workers at Kingston, New 
York [6], which has at present a theoretical performance of about 110 Mflops 
[6]. Indeed, execution times for various chemistry codes on the distributed system 
are comparable to those on a Cray-lS [7]. Such figures must, however, be 
considered in the light of no attempt having been made to either exploit the 
vector architecture of the Cray or to adapt the codes to the architecture of the 
FPS-164 [7]. Our primary aim here is somewhat different. We wish to consider 
the steps necessary to exploit the full performance of one AP, and to subsequently 
contrast that performance with supercomputer performance typified by the Cray- 
IS and Cyber-205. Consideration is given in Sect. 6 to the features of multipro- 
cessor systems that are necessary in order to satisfy the requirements of computa- 
tional chemistry, while our own experience in adapting codes to a parallel 
environment will be considered in Sect. 7. 

2. The FPS-X64 scientific computers 

In this section we briefly review some features of the FPS-X64 scientific computers, 
focusing attention on the FPS-164 and the machine configuration at Daresbury. 

The FPS-164 attached processor is a highly parallel, pipelined processing unit. 
It has been designed to be a fast and inexpensive CPU with 64-bit floating point 
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operations. The processor is commonly referred to as an array processor because 
of its ability to perform array operations quickly. The AP contains an independent 
CPU and its own memory and disk drives. The CPU on the FPS-164 runs at 5.5 
million instructions per second, and several concurrent operations can take place 
on each instruction cycle, so that peak performance is about 11 megaflops. While 
allowing for the distinction between peak and realised performance, the AP has 
proved effective for the specialised "number  crunching" that constitutes a large 
part of scientific and engineering computer applications [2, 8]. 

The machine may be upgraded to an FPS-164/MAX, providing the potential to 
include vector features through the addition of special purpose boards to augment 
performance, particularly on matrix operations. Each MAX board adds 22 Mflops 
to peak attainable performance. The present machine configuration at Daresbury 
includes three such boards, and thus has a theoretical performance of 77 Mflops. 

In February 1985 FPS announced the release of a new product, the FPS-264. 
While maintaining 100% software compatability with the FPS-164, the reduction 
in the machine clock cycle, from 182 to 53 ns, leads to the machine running at 
least 3.45 times faster than its predecessor when executing software that does not 
involve disk or transfers to the front end, cache misses, interleave spins or refresh. 
While the machine architecture allows for the same type of memory-mapped 
schemes used in the MAX implementation on the FPS-264 as on the 164, a MAX 
version of  the 264 remains unannounced given the requirement for ECL gate 
arrays of a density not presently available. 

2.1. Hardware 

The machine logic is 64-bit with some VLSI components, but the overall tech- 
nology is not state of the art. The 64 bit instruction word is capable of initiating 
up to 10 tasks within each machine cycle (182 ns). The asynchronous and pipelined 
design allows initiation of a task on a given unit on every machine cycle even 
though a previous task is not finished. The parallel design allows simultaneous 
initiation of  tasks on more than one unit in the same machine cycle. For example, 
an add, a multiply, a memory fetch, and compare can all be initiated with one 
instruction word. 

The machine at Daresbury comprises a main memory with 1.5 MWords 
(12 MBytes) of storage, and a table memory. The main memory is the primary 
storage unit, containing program source and data. The table memory, an auxiliary 
storage medium, needs 2 machine cycles to complete a read or write request, 
compared with 3 cycles for the main memory and is partitioned into a read-only 
portion (TMROM, 8 KWords), containing certain constant tables, and a random 
access portion (TMRAM, 16 KWords) which can be used via assembly language 
or through FPS supplied math library routines. 

2.2. Strategy for using the scientific computer 

The AP may be used in two distinct ways. In the AP EXecutive (APEX) mode, 
a host FORTRAN program calls subroutines that run on the AP. In contrast the 
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System Job Executive (SJE) mode allows a complete program to be run entirely 
on the AP, and involves significantly less interaction and reliance on the host. 
In this latter mode, the SJE software is run partially on the AP and partially on 
the host. Typically in the SJE mode of operation the user can interact with the 
SJE software on the host, load the executable module and data to the AP, create 
other files on the disk subsystem, initiate execution and wait for the completion 
of  the job. Note that all usage of the Daresbury machine described in this paper 
has relied exclusively on SJE mode, while the parallel implementation described 
in Sect. 7 made extensive use of APEX mode (see Appendix II). 

3. Computational chemistry 

It is in conjunction with the remarkable progress in computer technology over 
the last two decades that chemical theorists are now making the type of contribu- 
tions to science envisaged by Dirac more than fifty years ago. Looking ahead, 
we may be confident that within the next decade theoretical/computational 
chemistry will be an equal partner with the traditional fields of organic, inorganic 
and physical chemistry. Clearly, computers are and will continue to be part of 
the arsenal of  instrumentation available to molecular science. 

The ab initio computation of the electronic structure of molecules is a subject 
with a history at least as long as that of electronic computers themselves. Since 
1960, the subject has shown a particularly rapid evolution, with the outcome that 
many reasonably efficient computer programs are available on scalar machines. 
These codes share at least two traits: they all represent a considerable investment 
in man-years (say between 5 and 30) and all are relatively large (say between 
20 000 and 150 000 lines of FORTRAN), as befits a complicated problem. The 
advent of  the large scale vector processors (e.g. Cray-1, CDC Cyber-205) and 
their smaller brothers (e.g. FPS-164 and the more recent Convex C1) led to 
substantial efforts [2-5] to alter the existing codes to conform with the require- 
ments of  these new machines. The aim throughout was to achieve a code design 
which was reasonably transportable from one vector (or array or scalar) processing 
computer to another, with the capability of driving these processors at somewhat 
near their maximum power. Central to this effort was the realisation that five of 
the most important steps in a typical quantum chemistry calculation may be 
structured around the matrix multiply operation (MMO), yielding a relatively 
machine independent structure, given that the MMO is capable of driving all 
existing computers at their maximal power. A summary of the characteristics of 
electronic structure calculations, and an outline of  the MMO-based algorithms 
involved has been given previously [2-3]. 

3.1. Code implementation strategy 

Our experience in the development of  optimised Quantum Chemistry (QC) 
programs on vector processors typified by the Cray-1 and Cyber-205 suggests 
that optimum performance can only be achieved by resorting to assembly language 
constructs for many of  the vector kernels involved, e.g. the matrix multiply 
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operation (MMO), SCATTER, transposition etc. This partly reflects a lack of 
"richness" in typical QC software, where for each fetch and store very little 
floating point arithmetic occurs. This use of assembly code permits, for example, 
account to be taken of the segmented nature of the scalar and vector functional 
units, and enhances the MMO on the Cray-lS from some 37 Mflop to an 
asymptotic performance of 147 Mflop (see below). 

The Cray-lS is perhaps not the ideal machine for comparing FORTRAN and 
assembler performance. Store access conflict problems together with chain-slot 
loss left much to be desired for the FORTRAN user. Although these effects have 
been largely remedied on the XMP-1, reliance on FORTRAN still leaves the user 
unable to take advantage of hiding scalar control activities under vector 
operations. The situation is less clear on the multiprocessor XMP-n, where store 
access conflict problems in the case of a general code implemented at the large 
granularity level would be exacerbated by the generation of redundant store/fetch 
operations. 

While the 205 is potentially an ideal FORTRAN machine, similar problems 
remain because of deficiencies in the current FORTRAN compiler. Many of the 
typical loops in QC software involve items from argument lists, and as such 
inhibit automatic vectorisation using the FORTRAN 200 Compiler, given the 
requirement for a vector length "known" to be less than 65536. Since use of the 
"UNSAFE vectorisation" option commonly led to miscompiled code, the strategy 
of building a META library of FORTRAN callable routines was adopted. Such 
a philosophy is in line with using the mathematical subroutine library of the 
FPS-164, which includes FORTRAN callable subroutines written in optimised 
assembly language to perform, amongst others, vector and matrix operations. 
The typical improvement figures arising from use of this library have been 
documented by Dunning and co-workers [2], and are reflected in the timings 
quoted in Table 1 for various standard vector operations. 

The above discussion raises the obvious question as to what order of operation 
should this reliance on factored routines be instigated. It would seem clear that 
factoring of code should occur at the N 2 / N  3 level, e.g. MMO, matrix square, 
diagonalisation, etc.; i.e. where there is a clear potential for taking advantage of 
the interplay between loop lengths. Indeed the prospects for large scale granularity 

Table 1. APMATH64 versus FORTRAN (OPT = 3) CPU times (seconds) for various standard vector 
operations, involving 1000 calls with a vector length (VL) of 50 

Mode Vector routine 

SDOT SAXPY SCALE COPY ADD 
Out-of-line FORTRAN 0.040 0.051 0.042 0.038 0.067 
In-line FORTRAN 0.032 0.041 0.031 0.031 0.060 
APMATH/APAL 0.027 0.037 0.026 0.025 0.037 
Break-even VL over FORTRAN 40 35 20 20 10 
VL for 90% full speed 90 100 70 70 80 
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may well be at this level. Factoring at order N, however, is more debatable; in 
cases where one cannot guarantee the magnitude of N (i.e. where the compiler 
will use a given algorithm regardless), or where one is dealing with non-vectorised 
code, then again factoring may appear beneficial, to accommodate alternative 
optimisation techniques e.g. loop folding. Factoring at the N-level is not, however, 
in general recommended, except perhaps where all of the loop may be represented 
by a single CALL to the library utility. Obviously the larger the library, the more 
likely this condition would be satisfied. An attempt to widen the range of the 
Basic Linear Algebra Subroutines (BLAS) might encourage such factorisation. 

As an exampIe of the clear advantages to be gained from factoring routines at 
the N 2 / N  3 level, we present in Table 2 the results of a matrix diagonalisation 
benchmark intended to supplement the previous analysis conducted by Dunning 
and co-workers [2]. We consider a similar benchmark, based on diagonalising a 
series of real symmetric matrices, with rank 10, 20, 30, . . . ,  100, using 64-bit 
floating point arithmetic. Again the CPU time was measured for the diagonalisa- 
tion of each size matrix and a weighted sum of these CPU times used as the 
benchmark execution time. Each matrix of rank N contributed to this sum as 
(100/N) 3 • CPU [2]. While the previous analysis was restricted to the EISPACK 
RS routine, we consider below the performance on the Cray-lS, FPS-164 and 
Cyber-205 (2-pipe) of nine diagonalisation routines available in various mathe- 
matical libraries and quantum chemistry codes: 

(i) .The library routine RS available in APMATH64 on the FPS-164 and in 
SCILIB on the Cray-lS (optimised FORTRAN). 

Table 2. Matrix diagonalisation benchmark.  Total CPU time (seconds) as a weighted function of  the 
time necessary to diagonalise ten real symmetric matrices (see text) 

CPU time 

FPS-164 

Source/  OPT(4) 
Routine library Cray-lS OPT(l)  OPT(3) ONETRIP  Cyber-205 

Householder  
RS APMATH64/  

SCILIB 6.8 32.6 
EIGRS IMSL 10.2 117.2 79.9 78.0 24.4 
HQRII  MOPAC 14.4 96.2 45.9 43.2 21.6 
HOUSE - -  24.1 
F02ABF NAG 6.0 73.3 16.2 
SDIAG2 8.3 107.7 76.2 74.0 23.7 

Jacobi 
JACOBI ATMOL 20.8 139.2 114.0 111.9 32.1 a 
E R D U W  BERKELEY 27.6 160.1 122.1 121.5 33.3 
JACO DISCO 116.9 675.6 432.3 416.1 126.3 

a(Meta 15.7 s) FORT R AN 200, cycle L640A 
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(ii) EIGRS, an unoptimised FORTRAN version of RS from the IMSL library 
of routines [9]. 

(iii) F02ABF, from the NAG library [10]. 
(iv) HQRII [11], as implemented in the semiempirical MOPAC program [12]. 
(v) HOUSE, a locally written APAL version of HQRII employing table memory 

in the tridiagonalisation and MAX boards in the back transformation. 
(vi) SDIAG2, as implemented in the MUNICH system of programs. 

These routines are all based on the Householder QR method. We also consider 
the performance of the following Jacobi diagonalisers: 

(vii) JACOBI, from the ATMOL system of programs [13]. 
(viii) JACO, the diagonalisation routine from the direct-SCF program DISCO 

[14]. 
(ix) ERDUW, as taken from the Berkely System of Quantum Chemistry codes. 

As noted by Dunning, a call to the APMATH library RS routine improves the 
FPS-164 time by a factor of 2.5 over the FORTRAN equivalent code (EIGRS), 
although the performance of the FORTRAN coded HQRII on the FPS should 
be noted, 75% of the speed of the APAL routine and almost twice as fast as the 
next best FORTRAN code (F02ABF). HQRII is also the most efficient FORTRAN 
routine o n  the host AS-7000, but is the slowest Householder routine on the 
Cray-lS. 

Improvements with pipelining on the FPS are rather disappointing, with the 
factor of 2.2 achieved by HQRII far greater than that of the other routines. In 
fact FORTRAN on the FPS is only marginally better than on the AS-7000, with 
factors between 1.1 and 1.4, a further reminder that replacing FORTRAN sub- 
routines with calls to the standard APMATH routines provides an essential step 
in realising the full potential offered by the FPS-164. We are unable to explain 
the exceedingly poor performance of the Jacobi diagonaliser in DISCO, a feature 
on all machines. 

Finally we consider the performance of our MAX-compatible routine HOUSE 
operating on larger matrices. For a matrix of rank 240 HOUSE requires 8.5 s, to 
be compared with 28.7 s for the APMATH EIGRS routine. For such matrices 
the FPS-164/MAX is approximately 92 times faster than the ubiquitous VAX- 
11/780. 

3.2. Disk I / 0  

Quantum chemistry is, of course, a subject with a notoriously high demand on 
I/O devices, both in terms of I/O rate and data capacity. The computational 
chemist will always be faced with the headache of trying to reduce I/O charges, 
and the optimum way of achieving this is often a function of both machine and 
installation. However, the design of any I/O system for quantum chemistry must 
always feature asynchronous activities with the maximum size of data transfer 
permitted, and by implication will require a large amount of available memory 
for coordinating this activity. On the Cyber-205 our present I/O system, utilising 
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the maximum unit of data transfer (12K words using small page transfers), acts 
to improve the I/O efficiency of certain stages of computation (and subsequent 
cost) by a factor of ten or more. The development of an efficient I/O system for 
the FPS-164 has been outlined in [2]. 

We note here a similar behaviour to that found on the Cyber when performing 
asynchronous I/O to the D64 and FD64 disk subsystems on the FPS. Table 3 
presents the elapsed times and associated transfer rates observed in migrating 
40 MBytes of data asynchronously to an FD64 800 MBytes disk, as a function 
of the unit of data transfer. Increasing this unit from 0.5K to 20K words is seen 
to improve the I/O efficiency by a factor of 7, although even with 20K word 
transfers performance falls short of the 1.8 MBytes/s theoretical maximum. We 
are currently unable to explain this rather poor performance, which may well be 
a local characteristic of the Daresbury set-up. 

3.3. Role o f  the M M O  

As has been mentioned previously the electronic structure problem can be 
formulated such that the MMO 

R = A B  

where perhaps A or B (but not both) is sparse, is of fundamental importance 
for five steps in a typical calculation 

(i) 2-electron integral evaluation over Gaussian functions [15, 16] 
(ii) Hartree-Fock construction of a non-correlated wavefunction [17] 

(iii) Transformation of the 2-electron integrals from an atomic to a molecular 
orbital basis [18] 

(iv) The construction of a correlated wavefunction using the DIRECT-CI tech- 
nique [4, 19] 

(v) The multiconfiguration SCF construction of a correlated wavefunction [20]. 

Details of an optimised MMO routine (MXMB) written in assembly language 
for the Cray-lS, using the "outer product" formalism and capable of utilising 

Table 3. Disk I/O benchmark total elapsed times (seconds) and associ- 
ated I/O rates for the transfer of 40 MBytes of data, as a function of 
the unit of transfer 

Unit of transfer Total elapsed time Transfer rate 
(KWords) (s) (MBytes/s) 

0.5 280 0.14 
1 140 0.28 
2 105 0.38 
4 70 0.58 
5 57 0.70 

10 44 0.86 
20 40 1.00 
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any sparsity in A or B, have been given previously [3]. Execution rates in excess 
of 100 Mflop are possible on the Cray with matrix dimensions (vector length, 
VL) as low as 24, the routine achieving an asymptotic performance of 147 Mflop 
when a dimension of 64 is used (or any multiple thereof), correlating with a 
hardware characteristic of the Cray. The performance of a straightforwardly 
coded vectorised FORTRAN version is in marked contrast, being asymptotically 
only 37 Mflop with very large matrix dimensions (see Fig. 1 of [3b]). Note that 
the direction of vectorisation in the sparse MMO depends upon which matrix is 
assumed sparse, so that one should vectorise by rows or columns of the result 
matrix, depending upon whether A or B, respectively, is assumed sparse. 

It is perhaps worth recalling at this point the Mflop rate for the hierarchy of 
preferred operations relevant'to the machines under discussion: 

Cyber-205 
Cray-lS 2-pipe FPS-164 

Recursive linked triad (MMO) 147 200 9.6 
Recursive linked triadic 49 200 4 
Recursive linked diadic 38 100 2.5 

Effectively the full potential of the FPS-164 in the sparse matrix multiply may 
be obtained directly through use of the APMATH library routine SMMMV (see 
[2b]). 

A consequence of the increased vector startup times on the Cyber-205 is, of 
course, the requirement for a significantly longer VL if optimal performance is 
to be achieved. Thus MMO rates of 100 Mflop on a 2-pipe 205 require a matrix 
dimension of 170, and illustrate the need for an alternative "long vector" algorithm 
for small matrices. Such an algorithm [21], comprising a hybrid scheme of dyadic 
operations, matrix transposition and bisection techniques outperforms the outer 
product algorithm by a factor of two for matrices of dimension 20 on a 2-pipe 
machine, where it rapidly achieves an asymptotic performance of 45 Mflop. 
Indeed this algorithm can outperform the hardware inner product order on a 
4-pipe machine. 

A comparison of the sparse MMO performance on the Cray-lS, FPS-164, Cyber- 
205 (2-pipe) and ~ - 7 0 0 0  is given in Table 4. In this benchmark a series of 
MMOs involving "~-matrices of rank 10, 20, 30,.... ,  100 were performed. Each 
MMO was performed a number of times, this number being inversely proportional 
to the rank, so that the summed CPU times of Table 4 refer to 100 MMOs for 
rank 10 matrices, 90 for rank 20 matrices, and so on up to 10 MMOs for matrices 
of rank 100. Figures are presented for both "full" (0% sparse) and 50%-sparse 
B matrices, and in each case a comparison is drawn between the performance 
of code written entirely in FORTRAN and that in assembly language. 

For FORTRAN implementation, the sparse-MMO on the Cray-lS is 10.6 times 
faster than the FPS-164 when handling non-sparse matrices, and 9.1 times faster 
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Table 4. Sparse MMO benchmark. Total CPU times (seconds) for a series of sparse 
MMOs (R = AB, see text) implemented in FORTRAN and assembly language 

127 

Sparsity in B-matr ix  

0% 50% 

F O R T R A N  
AS-7000 a 103.5 52.9 
FPS-164 (OPT = 3) b 60.4 32.8 
Cyber-205 (OPT = DPRS) f 19.2 10.2 
Cray-lS ~ 5.7 3.6 

Assembly language 
AS-7000 99.0 49.4 
FPS-164 (SMMMV) 17.4 11.7 
FPS-164/MAX-3 d FULL (PDOT) 8.9 8.9 

FULL (PMMUL) 4.9 4.9 
SPARSE 6.4 4.9 

Cyber-205 MXMB 2.9 1.6 
Cray-lS MXMB 1.4 0.7 

MXMA e 1.2 1.2 

FORTVS, level 1.4.1, with O P T =  3 and AUTODBL(DBL)  
b APFTN64,  F02-00 

COS 1.12 
d See text 

SCILIB 
f F O R T R A N  200, cycle L640A 

in the sparse matrix case. The FPS-164 is faster than the AS-7000 in both cases, 
by factors of 1.7 and 1.6 in the non-sparse and sparse case, respectively. 

Comparing assembly language MMO to FORTRAN MMO, the APMATH library 
routine SMMMV is of order 2.8-3.5 times faster, and the Cray-1S MXMB 4.1-5.1 
times faster with assembly language implementation, the factor depending on 
sparsity. Indeed these assembly language timings reflect the asymptotic perform- 
ance of the machines, with the Cray-lS 16.7 times faster than the FPS-164 in the 
sparse-MMO. 

The FPS-164 sparse MMO routine SMMMV is 4.5 times faster than FORTRAN 
implementation on the AS-7000 when operating on sparse matrices. Compared 
to supercomputer FORTRAN implementation, SMMMV is comparable in speed 
to the Cyber, and three times slower than the Cray-lS. 

Our initial approach to utilising the MAX capabilities of the machine has centred 
on coding an efficient FPS/MAX sparse MMO routine, SPARSE, The code 
initially invokes an APAL routine to pack the sparse matrix in blocks prior to 
invoking a second routine to drive the MAX. 

The sparse dot product runs at full speed on the MAX but cannot, due to extra 
overhead from unpacking the MD vector, use Table Memory. Thus the limiting 
speed of a sparse dot product on an FPS-164/MAX-n is 22n Mflops. A non-sparse 
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algorithm would limit to (22n + 11) Mflops, although naive use of the APMATH- 
MAX basic library routines as the kernel of a FORTRAN MMO produces an 
unacceptable level of subroutine call overhead for all but very large matrices. 
The finite dimensions of MAX vector memory, MD scratch work space and 
conflicting requirements to reduce packing and loading overhead, further limit 
the peak theoretical performance of a sparse MAX matrix product to 54 Mflops 
on 3 boards. The achieved rate of the MAX sparse MMO in the benchmark of 
Table 4 reflects the performance envelope of the benchmark, which peaks at 
matrix rank of 80. A significantly larger vector length would be required to 
approach asymptotic performance. With 50% sparsity and matrix rank of 400, 
SPARSE is 4.5 times faster than the library routine SMMMV. 

4. An ab initio computational chemistry system 

The vector implementation of five of the steps in a typical Quantum Chemistry 
calculation leads to the efficient computation of the total energy of a given 
molecular species at a fixed nuclear geometry. Chemistry, however, is not concer- 
ned merely with the properties of a molecule at a single point, but with the more 
general characteristics of multi-dimensional potential energy surfaces, with a 
quantitative account of the making and breaking of chemical bonds crucial in 
the study of reaction mechanisms. Ideally we wish to move automatically, and 
systematically, on a surface from one stable molecular geometry, through one or 
more transition states, onto a product equilibrium geometry. Such a "walking 
process" became viable with the development of efficient methods for calculating 
gradients of the molecular energy [22], together with the evolution of robust and 
efficient algorithms for locating minima and transition states based on first- and, 
more recently, second-derivative information. 

The complexity and sheer size of the programs required in such studies presents 
a formidable task for the computational chemist. Such a code must include, in 
addition to the optimised steps above, routines for the evaluation of the energy 
derivative for a broad class of wavefunctions of increasing complexity, involving 
computation of the derivatives of the one- and two-electron integrals. All such 
steps reside under control of optimisation routines designed to locate and charac- 
terise the stationary points on the potential surface in the minimum number of 
energy and energy-gradient evaluations. 

These programs are potentially vast consumers of both machine cycles and the 
more general resources of memory, disk space etc. Much of the 300 hours of 
Cray-1 time allocated by SERC to users in the QC community in the period 
1983-4 was consumed through use of these codes. It is estimated that the 
equivalent computations on the AS-7000 at Daresbury would have required at 
least 5000 h, effectively the entire machine. Some 20-30% of the current VP usage 
at the University of London Computer Centre (ULCC) and the University of 
Manchester Computer Centre (UMRCC) is taken up by Quantum Chemistry 
calculations. 
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Work in this area at Daresbury has concentrated on the GAMESS program 
(General Atomic and Molecular Electronic Structure System), a 200 000 line 
general purpose ab initio molecular electronic structure program for performing 
SCF- and MCSCF-gradient calculations [23]. The program utilises the Rys 
Polynomial or Rotation techniques to evaluate repulsion integrals over s, p and 
d type Cartesian Gaussian orbitals. Open- and closed-shell SCF treatments are 
available within both the RHF and UHF framework, with convergence controls 
provided through a hybrid scheme of level shifters and the DIIS method [24]. 
In addition generalised valence bond (GVB), CASSCF and more general MCSCF 
[20] calculations may be performed. 

The analytic energy gradient is available for each class of wavefunction above. 
Gradients for s and p Gaussians are evaluated using the algorithm due to Schlegel 
[25], while gradients involving d Gaussians utilise the Rys Polynomial Method. 
The recent incorporation of gradient pseudopotential capabilities also promises 
to significantly extend the size of system amenable to study. Geometry optimisa- 
tion is performed using a quasi-Newton rank-2 update method, while transition 
state location is available through either a synchronous transit [26] or trust region 
method [27]. Force constants may be evaluated by numerical differentiation. 
Large scale multi-reference CI calculations may be performed using the Direct-CI 
formalism. 

A variety of wavefunction analysis methods are available, including population 
analysis, localised orbitals, graphical analysis and calculation of 1-electron 
properties. 

4.1. Implementation of GAMESS on an FPS-164 

As an example of the typical problems encountered in migrating code from 
processor to processor, we consider our implementation of the GAMESS package 
on the FPS-164. Some of the problems that arose in converting the Cray version 
of the code are outlined below (see also [2]): 

(i) A potential problem is the use of non-standard data types - INTEGER*2, 
LOGICAL*I - in common blocks and equivalence usage. Due account of 
these effects had been taken during Cray implementation of the code. 

(ii) Use of extended DO-loops 
(iii) Use of Hollerith data types instead of charactertype data. Most QC programs 

are written in FORTRAN-4, but nevertheless compile successfully with 
FORTRAN-77 compilers, with the aid of various language flag options etc. 
Yet it was felt timely, given the general requirements of APFTN64, to 
undertake the task of converting the entire code to a FORTRAN-77 standard, 
at least as far as character type data was concerned. This conversion took 
approximately 2 weeks to carry out, involving, for example, major changes 
to the free-format data input routines. 

(iv) Use of dummy arrays that are not initialised on the most recent entry into 
the subroutine. 
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(v) The most serious problem encountered, and one that took several months 
to resolve, involved implementation of an efficient direct access asyn- 
chronous I/O system (see Sect. 3.2). Both the Cray and Cyber versions of 
the code rely on a multi-buffered I/O system based on the fundamental 
building block of 512 words (the Cray block). Typically multiple blocks are 
written under control of a single output statement (using, for example, the 
Q5 routines on the 205), but may be subsequently processed through multiple 
read commands. Attempts to conform to this structure using the asyn- 
chronous I/O facilities within APFTN64 revealed intolerable elapsed/wait 
times. The initial solution to this problem involved basing the I/O system 
on the FILES routines (vol. 3 of the Operating System Manual Set), a 
collection of FORTRAN callable routines providing far greater flexibility 
than their FORTRAN-77 counterparts. 

(vi) The initial 1/2 MWord configuration on the Daresbury machine provided 
a potential constraint on the systems amenable to study. The amount of 
available memory has been optimised in two ways: 
(a) In common with most QC codes, GAMESS features a large array which 

is partitioned and passed to subroutines in segments, the space require- 
ments for each segment depending on the chemical system under investi- 
gation. Access to such an array on the FPS is achieved through use of 
the/SYSSMD/ common block and SYSSADDMEM routine to define 
the first usable location in the program workspace. 

(b) The space requirements of the code itself have been minimised by 
extensive use of the flexible OVERLAY features of APLINK64. 

4.2. Performance of  G A M E S S  on an FPS-164 

In the present section we consider the performance of the GAMESS program 
on the FPS-164, Cray-lS and Cyber-205. Three separate calculations are con- 
sidered. In Tables 5 and 6 we list the CPU times for the various steps in calculations 
on the Till4 molecule. The first calculation (see Table 5) involved the evaluation 
of the one- and two-electron integrals over a contracted Gaussian basis of 76 
functions, followed by an SCF calculation. The optimised orbital space was then 
transformed to a 67 orbital basis (with the Ti ls, 2s, 2p, 3s and 3p orbitals frozen), 

Table 5. FPS-164 and Cray-1S performance comparison for a 2nd-order CI calcula- 
tion on Till 4 (see text) using GAMESS 

CPU time (seconds) 
CPU ratio 

Description FPS- 164 Cray- 1S FPS/Cray 

Integral generation 305.2 54.6 5.6 
SCF optimisation 90.1 23.0 3.9 
Integral transformation 1071.0 98.8 10.8 
CI diagonalisation ~ 
Cycle time (775742 csf) 1446.1 198.3 7.3 

a Convergence achieved in 10 iterative cycles 
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and a full second-order CI wavefunction calculation performed, involving 8 
valence electrons distributed in 10 orbitals (4al, 3t2, 4t2 and 5t2), yielding a total 
of 775, 742 configuration state functions (csf's), conducted within the direct-CI 
framework. 

The integral generation step is 5.6 times faster on the Cray then on the FPS-164, 
and the SCF step 3.9 times faster. Both integral transformation and direct-CI 
steps show increased factors arising from the dominant role played by the sparse 
MMO. The factor of 11 in the transformation step would undoubtedly be repeated 
in the CI phase given an increase in the external space employed in the present 
calculation. The observed factor of 7.3 stems from an external space of just 57 
functions. Note that on the current MAX implementation, the SCF and transfor- 
mation times of Table 5 are reduced to 84.4 and 553.8 s respectively, with the 
SCF step now 3.7 times faster on the Cray-lS and the transformation step 5.6 
times faster. 

In the second calculation (Table 6) we consider the performance of the 2nd-order 
direct-MCSCF module [20]. The timings refer to a more modest basis of 46 
functions, and are given for integral generation, SCF, symmmetry adaptation 
(via a pseudo-transformation) and a CASSCF calculation, with 8 electrons in 12 
orbitals, yielding a total of 17 945 csf's. Referring to the CASSCF step, we find 
the Cray-lS to be 8 times faster than the FPS-164, and the Cyber-205 (1-pipe) 
only 2.2 times faster. 

The final benchmark (Table 7) contrasts the performance of GAMESS with that 
of the CADPAC and ATMOL program suites in performing a routine 91 basis 
function 3-21G SCF calculation on the nitrobenzene molecule (C2v symmetry). 
Considering GAMESS, we again find the integral generation step to be 5.0 faster 
on the Cray-lS than on the FPS-164, and the SCF step 5.2 times faster. GAMESS 
is well suited to this type of calculation, with the increased speed factors against 
CADPAC and ATMOL in integral evaluation derived from use of the rotated 
axis technique rather than Gauss-Rys quadrature. Two factors account for the 
increased performance in the SCF step. With the present DIIS implementation, 
GAMESS converged in 15 iterative cycles, whilst both ATMOL and CADPAC 
required manual intervention, arising from inappropriate starting vectors, and 

Table 6. GAMESS machine performance comparison for a CASSCF calculation on 
the Till 4 molecule (see text) 

CPU time (seconds) 

Description FPS- 164 Cray- 1S Cyber-205 a 

Integral generation 115 
SCF optimisation 23 
Symmetry adaptation 80 9 20 
17,945 csf-MCSCF 2691 345 1184 

a 1-pipe at SARA, Amsterdam 
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Table 7. FPS-164, Cyber-205 and Cray-lS performance comparison in an 
SCF calculation on the Nitrobenzene molecule (see text) 

M. F. Guest et al. 

CPU time (seconds) 

Program FPS-164 Cray-lS Cyber-205a 

2-electron integral evaluation 
GAMESS 199 40 (16) b 72 
CADPAC - -  114 208 
ATMOL 1436 297 375 

SCF wavefunction optimisation 
GAMESS 188 36 105 
CADPAC - -  87 228 
ATMOL 3200 248 600 

a 2-pipe, Manchester 
b Vectorised rotated axis integrals 

needed significantly more iterations tO achieve convergence. Both GAMESS and 
CADPAC use in default the P-supermatrix, while ATMOL uses integrals directly 
in the SCF step. Although these timings may thus appear somewhat biased, they 
were obtained using the facilities available within the standard version of each 
program on the parent machine, and clearly show that GAMESS has a majo~ 
role to play in SCF calculations on large systems with s, p basis sets. 

4.3. Performance of the FPS-264 

To provide some idea of the improvement to be expected on the newly-released 
FPS-264, we include in Table 8 the overall timings obtained in optimising the 
geometrical structure of chromium tetranitrosyl, Cr(NO)4, using a double zeta 
basis of 110 functions [28], The table shows the breakdown of this gradient 

Table 8. Performance of  the FPS-164 and FPS-264 in computational 
chemistry. A geometry optimisation of Cr(NO) 4 (see text) 

CPU times (seconds) 

Step FPS- 164 FPS-264 

Input phase 3 1 
Vector generation 11 3 
1-electron integrals 104 30 
2-electron integrals 4221 1192 
SCF 2153 622 
1-electron gradient integrals 559 167 
2-electron gradient integrals 8845 2582 
Wavefunction analysis 44 12 
Other 12 3 

TOTAL CPU seconds 15952 4612 
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optimisation into component parts, and contrasts performance on FPS-164 
(release F1.0) and FPS-264. 

The increased performance of the 264, by a factor of 3.5, suggests that the impact 
of  this machine from Floating Point Systems on computational chemistry will be 
just as marked as its predecessor. Note that this benchmark involved migrating 
the executable load module directly from 164 to 264, and does not reflect the 
possible improvement to be obtained from 264 specific software. 

4.4. Towards open-ended ab initio capabilities 

At first Sight the N 4 I /O  and storage problem seems to present an insuperable 
constraint upon ab initio calculations. Although integral storage limits to a n  N 2 

problem for very large molecules, one does not see this behaviour in practice 
except for extended systems, such as a long polymer chain. Even then the number 
of integrals remains prohibitive for this effect to become appreciable. Clearly a 
radical rethink of the conventional approach is required to permit the routine 
examination of molecular systems comprising, say, more than 30 heavy atoms. 
The novel direct-SCF algorithm due to Almlof [14] seems to provide a viable 
alternative, and we have implemented such techniques within the GAMESS 
package. 

The philosophy of direct-SCF is not to store the integrals, but tO calculate them 
as required on each SCF iteration, thus eliminating virtually all I /O from the 
SCF, at the expense of increased CPU requirements. The only constraint upon 
the dimension of a calculation, N, is the amount of CPU time available, and the 
dimension of real machine memory (presently 3 N  2 words, plus program source). 
An obvious prerequisite to an efficient implementation of this algorithm is a 
highly optimised integral package. The importance of this is readily demonstrated 
by comparing the iteration times of  GAMESS (169 s) and the original program 
due to Almlof (576 s) in a small 91 basis function test calculation on the nitroben- 
zene molecule run on the FPS-164. 

Two sets of  calculations performed by us on the FPS-164 at Daresbury illustrate 
the applicability of the method to large systems, and suggest that extensive 
calculations may be conducted given a suitably configured, dedicated local 
facility, thus obviating the need for time-shared access on a large supercomputer 
facility (e.g. a Cray or multi-AP system). 

Firstly, we have optimised, in a 300 function, STO-3G basis set, a sixty atom 
icosahedral carbon cluster (Buckminsterfullerene or footballene [29]), using 
direct-SCF and analytic gradients. This cluster is of current experimental interest 
and has been the subject of  several semi-empirical calculations [30]. Our resulting 
geometry is in agreement with that of reference [30b]. The direct-SCF used 980 s 
per iteration, while evaluation of the one- and two-electron derivative integrals 
required 7500 s. Storage of t.he symmetry unique integrals in a conventional 
calculation would have required about 0.2 GByte of  disk space. More significant 
is our 540 basis function split-valence 3-21G calculation upon the same cluster. 
The direct-SCF used 4500 s per iteration. A conventional treatment would have 
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Table 9. A computational physics and chemistry benchmark 

M. F. Guest et al. 

CPU times (seconds) 

Code Subject area FPS-164 FPS-264 Cray-lS 
Time ratio 
FPS-164/Cray 

GAMESS 1006 301 116 8.7 
MULTI Computational 2691 765 345 7.8 
DISCO chemistry, CCP1 1127 208 5.4 
MOPAC 481 178 120 4.0 
MDTEST Molecular Dynamics CCP5 502 132 43 11.6 
CASCADE Lattice defects, CCP5 287 84 29 10.0 
LMTO Electronic structure of 

solids, CCP9 482 134 3.6 

filled our present disk system (1.8 GBytes), and produced an iteration time of 
2400 s (approximately 2000 s I / O  transfer time plus 800 s CPU partially over- 
lapped with the I /O) .  

5. Cost effectiveness of the X64 scientific computers 

In the preceding sections we have outlined the implementation and performance 
of various computat ional  chemistry codes. In the process of  evaluating the 
performance of a computer,  the ultimate criterion is centred on its ability to 
handle production work. In the present section we compare the performance of 
7 codes taken from the various subject areas supported by the Collaborative 
Computat ional  Projects (CCPs), these codes being in routine use on the Cray-lS 
at ULCC and on the FPS-164 at Daresbury. The timings of Table 9 refer to 
typical production jobs (see Appendix I). 

Note that all CPU timings presented above refer to the FPS-164 itself, and were 
obtained prior to the FPS-164/MAX upgrade. The impact of  this upgrade on the 
benchmark will be reported at a later date. 

6. Parallel processing and computational chemistry 

"Parallel processing" is exhibited in various ways in the present generation of 
scientific computers. Array processors use several arithmetic elements (adders, 
multipliers, arithmetic-logic units) to increase performance. Vector processors 
combine the arithmetic elements of  array processors with pipelining techniques 
and high-speed electronic components for the hundreds of Mflops performance 
claimed for these machines. One attractive way to improve performance is to 
make use of  parallel processing by embedding specialised co-processors in an 
existing high-speed machine, with the provision of software support  to enable 
the user to express the parallelism where appropriate.  This is exemplified in the 
FPS/164-MAX system, where the Matrix Algebra Accelerator (MAX) modules 
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are integrated into the established FPS-164 architecture through memory map- 
ping, and are directed by the CPU to perform any one of a fixed set of linear 
algebra operations. The MMO based algorithms (Sect. 4) of quantum chemistry 
are well placed to take advantage of such co-processors. 

Before discussing our own experiences in the parallel implementation of quantum 
chemistry software in Sect. 7, we briefly outline the options available in parallel 
architectures, and consider the appropriateness of each from the standpoint of 
computational chemistry. 

The phrase "parallel processing" will hereafter be used to refer to the use of 
multiple processors to speed up the execution of a single program, in contrast 
to methods designed to improve processing of a random job load (statistical 
parallelism, multiple streams of independent jobs; systolic parallelism, or pipe- 
lined subprograms). In assessing the ease of migrating any application code from 
a sequential to a parallel environment, we need consider the following: 

(i) Can the computation be parallelised asynchronously in "large sections", i.e. 
at least at the subroutine level, where the parallel part involves decomposing 
the domain of the problem, and letting each processor work on a different 
part of the problem. This domain decomposition is "coarse-grain" parallel- 
ism, and would appear vital in realising the full potential of any multi- 
processor system. Compilers will not be able to recognise this type of 
parallelism, at least in the near future, and intuitively coarse-grain parallelism 
will act to minimise communications between parallel processors. 

(ii) How frequent and time consuming are the necessary communications 
between parallel processes? What is the operating system overhead in 
initiating such communications? 

(iii) How evenly can the work be distributed between any number of processors? 
Such an even distribution is clearly required in achieving maximum 
efficiency. 

(iv) How crucial is the architectural feature of each processor being connected 
to a common (or shared) memory? 

6.1. Extremes in multiprocessor philosophy 

In Spite of the performance increases achieved through pipelining and vectorisa- 
tion, supercomputers are reaching the limits of their capabilities. However 
sophisticated its design and however fast its components, a single processor 
supercomputer eventually reaches limits imposed by fundamental electrical 
properties - switching speeds and propagation delays. 

The answer to improving supercomputer performance lies in concurrent architec- 
tures. Concurrency is a high level or global form of parallelism, denoting indepen- 
dent operation on a collection of simultaneous computing activities. A concurrent 
MIMD (multiple instruction-multiple data) machine thus uses loosely coupled, 
multiple, interacting processors to perform many operations at once. Concurrency 
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contrasts with other forms of parallelism, such as pipelining and multiple func- 
tional elements. These forms imply some form of lock-step control, which ulti- 
mately limits the expandability and performance of a system. Concurrency allows 
expansion to a larger number of processors because of the flexibility afforded by 
distributed memory, distributed control and loose coupling. 

Two of the approaches being taken to implementing parallel supercomputers are 
considered below. 

6.2. Multiple vector or attached processors, M V A P  

MVAP architectures are obtained by coupling two or more standard supercom- 
puters (or attached processors) together, typically to a common fast memory, as 
has been done by Cray Research with the X-MP series. Cost considerations, 
together with the use of shared memory in these and similar systems, ultimately 
limit the number of processors that can be connected: communication overhead 
and Amdahl's law suggests a limit of 16 co-operating processors. 

Partridge and Bauschlicher [6b] have considered on a two-CPU Cray X-MP the 
multiprocessor implementation of algorithms for (a) sparse symmetric matrix- 
vector product, (b) four index integral transformation, and (c) calculation of 
diatomic two-electron Slater integrals. They demonstrated the considerable degree 
of parallelism inherent in present algorithms that can be readily exploited, but 
suggest "considerable algorithmic development will be required for some steps 
(MCSCF and CI) to reduce network traffic, particularly on non-shared memory 
architectures". 

The most impressive and comprehensive investigation of MVAP parallelism in 
computational chemistry is provided by the on-going experimental parallel super- 
computer system, called LCAP (loosely coupled array of processors), developed 
by Clementi and co-workers at IBM Kingston, New York [6]. The initial LCAP 
system, LCAP-1, consisted of 10 FPS-164 scientific computers (seven attached 
to an IBM 4381 host and three to an IBM 4341), the FPS-164 processors being 
coupled to the IBM hosts through standard IBM 3 Mbyte/s channels. Numerous 
examples taken from quantum mechanics, molecular dynamics and Monte Carlo 
have demonstrated the high degree of parallelism obtainable in all three disci- 
plines [31, 32]. Our own experience in adapting quantum chemistry codes to the 
corresponding LCAP system at the IBM Scientific Centre in Rome, Italy, is 
considered in Sect. 7 below. 

The LCAP system at Kingston is continually being upgraded in response to the 
experiments conducted thereon [32]. The IBM 4381 and 4341 hosts have been 
replaced by an IBM 3081 and 4383, while each FPS-164 has been upgraded to 
an FPS-164/MAX-2. Attempts to increase the flexibility of LCAP include the 
provision of a bus connecting the APs and five shared bulk memories, forming 
two rings for further communication from AP to AP. The need for such extensions 
provides a further reminder that applications of either limited granularity or 
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requiring heavy AP- to AP-data transfer may require considerable algorithmic 
development to be viable on non-shared memory architectures. 

Workers at Kingston have recently instigated work on a second configuration, 
LCAP-2, comprising 10 FPS-264 processors using an IBM 3081 as front end 
processor. We await with interest a comparison of the performance of LCAP-2 
with, say, a Cray X-MP/48. 

6.3. Concurrent micro-processors, CMP 

A more practical approach to implementing supercomputer capabilities uses a 
large number of  today's most economical computational element, the microcom- 
puter, made feasible by the rapid enhancements in performance and cost advances 
achieved through VLSI processors. Numerous university research programs have 
focused on micro-processor based approaches to large-scale computing e.g. the 
Cosmic Cube at MIT [33], the V2/64 at Waterloo [34], DADO and VFPP at 
Columbia [35, 36] and the MMCE at Carnegie Mellon. When the concepts of 
distributed memory, distributed control and connected networks are used with 
concurrent computing architecture, there are few practical limits to the number 
of processors that can be linked to form a supercomputer system. Considering 
the application of such CMP systems to quantum chemistry codes, we immediately 
find the following requirements: 

(i) 64-bit floating point capabilities, with vector arithmetic pipelines available 
on each of the processors. 

(ii) If, in the interests of scalability to a large number of processing nodes, we 
are to forsake use of shared memory, and thus migrate to distributed memory 
systems based on a limited form of interconnection, we clearly need to quantify 
at the outset the minimum high-speed store requirements of each node. Bearing 
in mind the crucial role of memory in achieving both vectorisation and efficient 
I /O performance, it is clear that an inadequate high-speed node memory may 
well prove the Achilles' heel in adapting quantum chemistry codes to CMP 
architectures. 
(iii) MIMD architectures that use message passing rather than shared storage 
for communications between the nodes are alleged to provide increased efficiency 
compared to memory-sharing schemes. The choice of communication protocols 
by which messages and data are exchanged will clearly affect the performance 
of a concurrent algorithm: intuitively we require asynchronous message passing 
capabilities, for use of  synchronous protocols would almost certainly lead to 
significantly slower performance. 
(iv) Each node should be able to directly access its own disk storage. Provision 

of, say, 1 GByte of disk-store/node would undoubtedly act to lessen the need 
for very-high message passing capabilities between component nodes. 

(v) A crucial consideration in assessing available options is that of cost. Most 
of the supercomputers available today (from manufacturers such as Cray, CDC, 
etc.) lay in the $5 million to $15 million price range. The ultimate aim of a CMP 
based system must be to bring the computer-power associated with the more 
traditional supercomputer architecture into the price range affordable by a single 
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(university) group. In the search for cost-effectiveness, we shall, rather arbitrarily, 
confine our attention to systems costing 10% of this figure, i.e. in the $0.5 million 
to $1.5 million range. 
(vi) The software investment to date in FORTRAN-based codes on both scalar 

and vector machines strongly suggests that FORTRAN remains the application 
programming language. While the definition of concurrent processing problems 
may be more easily accomplished through alternative languages, this would lead 
to massive conversion requirements and a total lack of continuity with past, 
present and future serial and MVAP machines. These are unacceptably high 
prices to pay. 
(vii) If configuring a CMP system with the mode attributes outlined above proves 
cost prohibitive, then downgrading some of the nodes in heterogeneous fashion 
would still leave QC applications well placed to take advantage of the techniques 
developed in an MVAP framework. 

6.3.1. Available CMP systems. Two commercially available systems promise to 
satisfy many of the requirements outlined above, the FPS Tesseract from Floating 
Point Systems, and the iPSC-VX from Intel. Both systems are based on the binary 
n-cube interconnect scheme developed by Seitz and Fox [33, 37]. The advantages 
of the hypercube topology include: 

(a) It provides the option to expand to larger, more powerful systems as needs 
increase or VLSI-component technology improves. Both the FPS and Intel 
implementations provide the potential for open-ended architectures in con- 
trast to other approaches, such as shared memory and buses, which are 
limited in the extent to which they can be expanded. 

(b) The hypercube offers high communications efficiency and communications 
capabilities that closely match the needs of real problems. 

Returning to the original criterion of price, we find that both the iPSC-VX/26 
(peak performance of 424 Mflops (64-bit) or 1280 Mflop (32-bit)) and the FPS 
T-40 (peak performance of 512 Mflop for 64-bit arithmetic) lie comfortably within 
our suggested price range. Both offer some 50% of peak Cray X-MP/48 perform- 
ance. Such comparisons based on peak rates are, of course, fatuous and it remains 
to be seen whether the tremendous potential offered by such CMP architectures 
can be translated into reality by the computational chemist. 

7. A parallel implementation of quantum chemistry codes 

In the following sections we describe our experience in adapting code to run on 
an MVAP system, outlining theimplementation of four important steps in a 
quantum-chemical calculation (integral evaluation, SCF, 4-index transformation 
and direct-CI) on the parallel environment at the IBM European Center for 
Scientific and Engineering Computing (ECSEC) in Rome [38]. 

In Sect. 7.1 we outline the pertinent features of both the available hardware and 
software characterising the parallel environment, and in Sects. 7.2 and 7.3 provide 
an outline of the implementation of the four above mentioned steps. We try to 
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assess the efficiency of parallelism for each step, and report some provisional 
timings, showing the amount of overhead to be expected. An attempt is then 
made to relate our experiences to that likely to be found on CMP architectures. 

7.1. The parallel environment at ECSEC 

The ECSEC facility consists of  an IBM 4383 host computer, running under 
VM-CMS, and 10 attached FPS-164 processors each with 1 MWord of memory 
and 0.6 GByte of  disk space. No communication is possible between the attached 
processors, so all communication between the FPS machines has to go through 
the IBM host, effectively in serial mode. The communication between IBM and 
FPS proceeds through 2 MByte/s  !/O-channels.  

Two different software environments are provided. 

(a) The VM-EPEX approach, developed at the IBM T. J. Watson Laboratory in 
Yorktown [39]. This environment allows various virtual machines to run concur- 
rently and to communicate and share data via a shared memory. Each virtual 
machine has also private memory and private disks. Since each may attach an 
FPS-164 processor, "real"  parallelism may be obtained by migrating the work-load 
to the AP. The VM-EPEX system features shared memory and may thus be 
considered to be an approximation to a multi-processor system like the Cray 
X-MP, though the latter allows disks to be shared as well. 

VM-EPEX offers a preprocessor, with parallel FORTRAN extensions under the 
control of directives such as: 

@DO Divide a DO-loop over the processes, 
@serial begin Defines a part of  the code to be executed by one process only, 
@barrier Synchronises all processes, 

as well as access to shared memory (@shared/Block/) and to the number of  
processes and the identification number of each process. 

When no control is exerted all processes run in parallel the same code, but not 
necessarily the same data, yielding data-driven parallel processing. The shared 
memory is not protected against a simultaneous update of the same memory 
location by two processes, so in parallel adding into the same variable in shared 
memory may produce unpredictable results. Therefore the user has to guard 
against this, and the adding of the results from the various processes has to be 
performed by a single processor, i.e. serially. The scatter of data, e.g. at the end 
of a sort, may be performed in parallel though, since one may be sure that each 
memory location is only accessed once. Note that since shared memory is only 
available on the IBM host, which was in our case mostly running on 1 processor, 
no real parallelism is involved in the manipulation of shared memory anyway. 

(b) The VMFACS [40] approach developed at Kingston, is more directly geared 
towards a LCAP setup. One Master virtual machine can divide the work over 
various slave virtual machines, that can attach in their turn an FPS-164. The IBM 
slaves may in fact be transparent to the user, so one may call the attached 
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processors directly as slaves in the Master program. Here a preprocessor is 
available to translate instructions like: 

C$ EXECUTE ON . . .  

C$ WAIT FOR . . .  
C$ SLIN . . .  
C$ SLOUT . . .  
C$ SLIO . . .  

Execute a subroutine on either a specific slave or 
all slaves, with the results collected again on the 
master. 
Synchronise all or certain processes 
Allow for data-communicat ion between master 
and slave in a way very similar to the FPS-APEX 
IBM-FPS communication. 

and one has access to the number  of  slaves and each slave can access its own 
identification. 

In the master-slave environment,  in contrast to VM-EPEX, the default is to run 
in serial mode only on the master and specific instructions are required to run 
in parallel. Since the master-slave communication may be "directly" between 
attached processor and host and the serial processing on the IBM is built in, this 
approach seems the more natural in a LCAP environment. 

In the practical parallelisation of a program, however, there seems to be no 
difference in actual strategy. Since we want to be prepared for shared memory 
machines like the Cray X-MP, the VM-EPEX approach was chosen as the main 
implementat ion tool. Various aspects of host-AP control are presented in Appen- 
dix II. 

7.2. Implementation strategy 

In all stages of  the quantum-chemical  calculation three phases may be distin- 
guished in the parallel implementation: 

Phase I. The workload is divided among the processes in either an arbitrary way 
(using @DO's) or in some carefully predefined manner. Each process produces 
its own (intermediate) result file which contains sufficient information to label 
the data in a unique way. 

In the integral evaluation and the calculation stages of  the 4-index transformation 
these intermediate files contain labelled integrals. Here since a major  part  of  the 
calculation is actually performed in Phase 1, dividing the workload may be left 
to a simple scheduler, with the sole constraint being an equi-partition of  the load 
over the available processors. In Direct-CI the division of the workload is defined 
by the calculation of the symbolic interaction between model-configurations. This 
is, in general, not a time consuming step and must be partit ioned exactly to match 
the Fock-building parts of  the integral sorter, and must therefore be divided in 
a rigorously deterministic way. 

Phase 2. The second phase involves a data-driven calculation, which typically 
requires little change to the original sequential code. Each process goes over its 
own file and no coordination is required. Examples are (a) the SCF calculation, 
where a (partial) Fock-matrix is formed out of  the density matrix and the partial 
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2-electron integral file, (b) the sorting stages of the 4-index transformation and, 
(c) the H-matrix-vector product in the Direct-CI employing the partial symbolic 
file. 

Phase 3. The final phase is to synchronise the processes and gather and analyse 
the results. The adding and diagonalising of the Fock matrix, the final stage of 
the 4-index sort and the adding and analysing of the matrix-vector product in 
the Direct-CI fall into this category. This phase runs almost entirely in serial 
mode, because it is run on the host IBM, a significant portion involving the 
addition of the results of the various processes and analysing the result on the host. 

7.3. Practical considerations 

7.3.1. Integrals+SCF (Fig. 1). In order to provide an even distribution of work 
the first two DO-loops over shell blocks in the two-electron integral code were 
collapsed into a single loop over shell triangles. Using an @DO for this combined 
loop divides the integral calculation effectively over the processes, yielding partial 
integral files. Then the SCF calculation may proceed with the independent 
construction of the n partial-Fock matrices. The only overhead involved is the 
cost of adding the partial matrices, proportional to n2x np, where n is the AO 
dimension and np is the number of processes, whereas the Fock matrix diagonali- 
sation (n 3) is at present performed serially by one process only. Since the work 
divided is proportional to n 4 (the extra overhead and host-AP I/O amount only 
to n2), and the data-driven phase is performed repeatedly, Hartree-Fock calcula- 
tions prove to be particularly well suited to MVAP parallel processing. 

Fig. 1. Dataflow for GAMESS (integrals + SCF) 

"GAMESS" 
Process 1 Process 2 

(ab/cd) 

(ij/kl) (i'j'/k'l') 

I J cJ L I 
-I F 
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7.3.2. Integral transformation (Fig. 2). In the bucket sort, reading the partial 
integral file and writing the buckets to the sort file are the only parts running 
data-driven parallel (Phase 2). Then follows the reading of the "backchain" 
which, since we need to gather all integrals, has to be transported in serial mode 
to the host. This yields a significant overhead of the order of n 4 I/O operations 
and significant synchronisation overhead. When all integrals needed are in core 
the work may be divided (using @DO) over the processes, requiring an additional 
n 4 overhead in transporting the integrals back from host to APs. Since the work 
performed in parallel is of the order of n 5 and the I/O overhead and serial part 
is proportional to  n 4, the 4-index may be expected to be a substantial bottleneck 
in the calculations, requiring very large dimensions to make the parallelisation 
gain prevail over the I/O overhead. 

This problem may be completely removed if a.shared disk is provided, as on the 
Cray X-MP, or efficient communication between the processors is available. In 
the former case one may divide the backchains over the processes, requiring 
negligible data transfer (e.g. only the starting block positions) and yielding 
completely parallel processing of the entire 4-index transformation without any 
overhead. 

7.3.3. Direct-CI (Fig. 3). Here again the sorting is performed only partially in 
parallel again requiring host-AP I/O. However, this sort is usually not a substan- 
tial part of a CI calculation so the overhead stays moderate. The main time- 
consuming task in the CI calculation is the H-matrix-vector product which is 
performed using raw integrals and symbolic matrix elements. This part is highly 
vectorised 

4-index 
Process 1 Process 2 

BINS : (ef / . . )  

SORTA 

MERGE A 

CALC A 

SORT B 

MERGE B 

CALC B 

BINS : (e l / . . )  

Fig. 2. Dataflow in the 4-index transformation 
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CI 
Process 1 Process 2 

Fig. 3. Datafiow in direct CI 

q (i'j'/kT) 

SORT I. 

and almost completely driven from the symbolic matrix element list. Therefore 
this list generation was divided over the processes in a deterministic way. Since 
here the data-driven part  is performed repeatedly and is by far the most time 
consuming part,  with the overhead involving only the addition of the CI  vector, 
the Direct-CI should be reasonably well adapted. 

7.3.4. Preliminary results. We present in Table 10 the timings for a simulated 
parallel run on formic acid [41] using the GAMESS program. I f  one adopts the 
time of each step as the measure, the four processes are seen to run about three 
times as fast as the single processor case, whereas the overhead in CPU is only 
about 10%. In running the integrals + SCF really parallel on two FPS processors 
the elapsed time was ca. 1560 s compared to 2735 s on one processor, substantially 
more than the CPU times (cf. Table 10) showing that the IBM at the Rome 
ECSEC Center was too heavily loaded to provide realistic or competitive timings. 

The amount  of  code requiring modification amounted to some 2 % - 5 %  of the 
total, usually only a few lines in any subroutine requiring change. A few routines 
needed significant modification, e.g. the builder of  the diagonal of  the Hamiltonian 
matrix in Direct assumed all diagonal elements to be present which is not true 
anymore on each process when running in parallel. 

7.4. Role of parallelism in quantum chemistry 

In the preceding sections we have outlined the current status and prospects for 
computat ional  chemistry on both MVAP and CMP architectures. A point that 
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Table 10. A multi-processor benchmark. Total CPU times (seconds) for an SCF+ SDCI calculation 
on formic acid (see text) 

Single processor b Multiple IBM virtual processes 

FPS IBM-4383 1 2 3 4 max 

2e integrals 
SCF 
4 index 
Direct-CI 
Total 
Integral blocks a 
AO integral s 
Transformed integrals 

330 338 71 137 70 69 137 
385 325 127 183 94 73 183 
324 913 230 239 226 231 239 
440 1593 605 422 359 327 605 

3176 1049 999 767 717 1164 

2246 430 959 485 377 
1861 478 497 455 435 

a I Block = 340 integrals+labels 
b Timings from the current version of GAMESS on the FPS-164/MAX-3 are as follows: 

Integrals: 320 s; SCF: 78 s; 4-index: 172 s; Direct-CI: 340 s 

should be stressed is that multi-processing on the coarse-grain level provides the 
obvious route to removing the inevitable scalar-bound portions of vector codes. 
While we would be very reluctantt  9 embark on serious code implementation on 
any system without vector features on each node, it is undoubtedly true that for 
many disciplines multi-processing holds the promise of far greater performance 
than the present generation of vector supercomputers. 

Experience on MVAP architectures has clearly shown the essential role of coarse- 
grain parallelism in achieving performance. While we may be accused of  naivety 
in hoping to carry such techniques directly into the CMP regime, nevertheless 
an insistence on the adequate provision of both high speed memory on each 
node and high communication rates between nodes would seem crucial in deciding 
on the suitability of a specific CMP architecture. While the methods of computa- 
tional chemistry lend themselves to MIMD parallel treatment, the present 
implementations of post Hartree-Fock methods point strongly towards shared 
memory architectures. 

It is perhaps worth trying to put into context the advent of multi-processor 
capabilities in the light of advances made possible by vector machines. To date 
developments in some areas of quantum chemistry have kept pace with the 
advances in VP machine architecture. Thus the size of problem amenable to study 
by both MCSCF and CI techniques has increased by between two and three 
orders of magnitude in the last decade, a figure comparable to the increase in 
machine performance witnessed over the same period. The major impact of VPs 
has, however, been not so much the ability to perform state-of-the-art  calcula- 
tions, but more the ability to decrease response time to the demands of our 
experimental colleagues. This situation is especially true in an industrial 
environment. 

There remains, however, the dilemma of the centralised VP. However prestigious 
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a research group, it is never likely to control more than, say, one or two hours 
a day on such machines. The same situation will almost certainly apply on the 
present and future generation of MVAP machines. While the achievements of 
Clementi and co-workers on the LCAP architecture are extremely impressive, 
one should not lose sight of  the obvious cost of  such an installation. Based on 
peak rates alone, the cost/performance ratio for CMP systems would suggest an 
order of magnitude improvement over that realised by current supercomputer 
facilities. 

An increasing requirement in the application of  QC techniques to the field of 
computer-aided molecular modelling is that of the interactive work-station with 
high-speed graphics, typified by the Evans and Sutheriand PS300. Such stations 
presently rely on machines such as the VAX-11/780 - the impact of  CMP machines 
on personal workstations cannot be overestimated. It is difficult to visualise the 
availability of  such facilities for an external user community on a centralised 
MVAP machine, given the current state of  networking. 

In an MVAP environment one needs to assess the cost-effectiveness of employing 
statistical parallelism (multiple streams of independent jobs) as against permitting 
a single job to control all machine resources. As demonstrated by Bauschlicher 
[6b], the communication overhead on an X-MP/24 is less than 10% on typical 
QC applications: if a specific application requires all of memory, it is in the 
interest of  efficient machine utilisation for that job to use the full CPU power of 
all processors. One situation where there exists a clear requirement for parallelism 
is when a certain arbitrary resource is in short supply. Examples may be that the 
disk-space on one processor of an LCAP system is not sufficient to store the 
integrals for a given calculation. It is then essential to spread the job, and the 
integrals over various processors. 

8. Summary 

We have outlined the present use and impact of FPS-X64 scientific computers 
in computational chemistry, focusing attention on performance obtained on an 
FPS-164. There are several aspects of the present work which perhaps set it apart 
from that conducted at other FPS-164 installations: 

(i) The machine is judged in terms of its performance against, not a VAX 11-780 
or a superminicomputer, but against machines such as the Cray-1 and 
Cyber-205. 

(ii) The user environment, involving both in-house and networked access at 
Daresbury, provides a far more demanding test of the machine than the more 
traditional "single user, single program" framework. 

Experience to date suggests that the strength of  the X64 products lies in the final 
CPU performance obtained, the various comparisons performed herein depicting 
factors for the FPS-164 of between 1/10 and  1/4 Cray-lS performance over a 
wide range of codes. The weakness of the min i+AP setup lies perhaps in the 
host-resident software, and the adverse effects of the rather primitive operating 
system on the AP. 
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Never the less ,  the ques t ion  as to whe ther  the  m i n i + A P  setup prov ides  a v iable  
a l te rna t ive  to t ime-sha red  s u p e r c o m p u t e r  access would ,  at least  in c ompu ta t i ona l  
chemis t ry ,  appea r s  to be  answered  affirmative. 

In  assessing the migra t ion  o f  c o m p u t a t i o n a l  chemis t ry  codes  to a para l l e l  environ-  
ment ,  we have cons ide red  the meri ts  o f  bo th  M V A P  and  C M P  archi tectures .  Our  
own exper ience  in imp lemen t ing  H a r t r e e - F o c k  and  Di rec t -CI  codes  on a para l l e l  
M V A P  env i ronmen t  suggest  tha t  the  bo t t l eneck  to an efficient i m p l e m e n t a t i o n  
may  reside in the in tegra l  t r ans fo rma t ion  step,  at least  on  non - sha re d  m e m o r y  

archi tectures .  

M V A P  systems imply  a cen t ra l i sed  faci l i ty,  and  the obvious  shor tcomings  associ-  
a ted  with such an env i ronment ,  e.g. inf lexible  mach ine  managemen t ,  ne tworking ,  
etc. Based  solely on  p e a k  pe r fo rmance ,  C M P  archi tec tures  p romise  to real ise  the  
full  po ten t i a l  o f  ab initio t echniques  in a rea l - t ime works ta t ion  env i ronmen t  for  
the  n o n - c o m p u t e r  mo t iva t ed  chemist .  The  role o f  the c o m p u t a t i o n a l  chemis t  in 
deve lop ing  this scenar io  is crucial .  
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Appendix I 

A computational chemistry and physics benchmark (see Table 9) 

Code Calculation 

GAMESS 
MULTI 
DISCO 
MOPAC 
MDTEST 
CASCADE 
LMTO 

2nd-order CI calculation on H20 (TZVP basis; 53 937 csf) 
CASSCF calculation on Till4 (17 945 csf) 
Direct-SCF calculation on HCONH2 (DZ basis) 
Partial geometry optimisation of anthraquinone (no symmetry) 
MD simulation of liquid argon (5000 time steps of 108 particle system) 
Energy minimisation of Na+ defect in quartz 
Self consistent energy for hcp gadolinium 

Appendix II 

Using the APs  under A P E X 6 4  

The ac tua l  p r o g r a m m i n g  o f  and  c o m m u n i c a t i o n  with  the  APs  is p e r f o r m e d  by  
APEX64.  The  A P E X 6 4  sys tem controls  c o m m u n i c a t i o n  be tween  the hos t  and  
APs  for  pa ra l l e l  use. I t  enables  the  user  to ini t ia l ise  and  reques t  a n u m b e r  o f  APs  
and  re lease  them again  af ter  use. This " r e a l "  pa ra l l e l  use o f  the APs  was only 
ach ieved  for  the  in tegra l  and  S C F  modu le s  o f  G A M E S S .  Wi th in  the  f r amework  
desc r ibed  above  (Sect. 7.3), a l ter ing subrout ines  tha t  were a l r eady  runn ing  in 
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simulated parallel mode was straightforward. For instance, the integral routine, 
consisting of a large nested loop structure, with an @DO as outer loop is divided 
into three parts, each calling a separate AP routine. 

(i) The first routine call initialises the AP and transfers data from the host. 
(ii) Within the @DO-loop host-computation of the integrals is replaced by a 

call to corresponding AP routines. The workload is distributed by the @DO 
loop, using the loop index as calling parameter. 

(iii) Finally, after completion of the integral calculation on all processors, a third 
routirre returns some data to the host, though the partial integral files are 
left on the AP. (Using only one AP routine with several entry points proved 
to be impossible.) 

Using this construction one must be careful to use SAVE statements to preserve 
the status of the processors on transferring control between host and APs. Su'ch 
statements must be introduced in all subroutines in which the SAVE'd parameters 
or common blocks appear. Failure to do so produces error diagnostics from 
APLINK. 

Although it was not strictly necessary, the APs were attached for the total duration 
of the job. 

Timings were difficult to obtain, but compared to the simulated parallel jobs the 
work load appeared to be far less evenly distributed. When running a large job 
and/or  using a larger number of APs (say 8) unpredictable results were obtained. 
Roll-in/roll-out problems were encountered on several of the APs, leading to 
premature job abortion. On some occasions the results obtained were dearly in 
error. Insufficient time was available to investigate these problems further. 
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